A Jacobi-Davidson Method for Nonlinear Eigenproblems
نویسنده
چکیده
For the nonlinear eigenvalue problem T (λ)x = 0 we consider a Jacobi–Davidson type iterative projection method. The resulting projected nonlinear eigenvalue problems are solved by inverse iteration. The method is applied to a rational eigenvalue problem governing damped vibrations of a structure.
منابع مشابه
A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems
This article discusses a projection method for nonlinear eigenvalue problems. The subspace of approximants is constructed by a Jacobi–Davidson type approach, and the arising eigenproblems of small dimension are solved by safeguarded iteration. The method is applied to a rational eigenvalue problem governing the vibrations of tube bundle immersed in an inviscid compressible fluid.
متن کاملProjection Methods for Nonlinear Sparse Eigenvalue Problems
This paper surveys numerical methods for general sparse nonlinear eigenvalue problems with special emphasis on iterative projection methods like Jacobi–Davidson, Arnoldi or rational Krylov methods and the automated multi–level substructuring. We do not review the rich literature on polynomial eigenproblems which take advantage of a linearization of the problem.
متن کاملNumerical Computation of Cubic Eigenvalue Problems for a Semiconductor Quantum Dot Model with Non-parabolic Effective Mass Approximation
We consider the three-dimensional Schrödinger equation simulating nanoscale semiconductor quantum dots with non-parabolic effective mass approximation. To discretize the equation, we use non-uniform meshes with half-shifted grid points in the radial direction. The discretization yields a very large eigenproblem that only several eigenpairs embedded in the spectrum are interested. The eigenvalue...
متن کاملA New Justification of the Jacobi–davidson Method for Large Eigenproblems
The Jacobi–Davidson method is known to converge at least quadratically if the correction equation is solved exactly, and it is common experience that the fast convergence is maintained if the correction equation is solved only approximately. In this note we derive the Jacobi–Davidson method in a way that explains this robust behavior.
متن کاملZentrum für Informationsdienste und Hochleistungsrechnen (ZIH) A primal-dual Jacobi–Davidson-like method for nonlinear eigenvalue problems
We propose a method for the solution of non-Hermitian ill-conditioned nonlinear eigenvalue problems T (λ)x = 0, which is based on singularity theory of nonlinear equations. The singularity of T (λ) is characterized by a scalar condition μ(λ) = 0 where the singularity function μ is implicitly defined by a nonsingular linear system with the appropriately bordered matrix T (λ). One Newton step for...
متن کامل